Evidence for Periciliary Liquid Layer Depletion, Not Abnormal Ion Composition, in the Pathogenesis of Cystic Fibrosis Airways Disease
نویسندگان
چکیده
The pathogenesis of cystic fibrosis (CF) airways infection is unknown. Two hypotheses, "hypotonic [low salt]/defensin" and "isotonic volume transport/mucus clearance," attempt to link defects in cystic fibrosis transmembrane conductance regulator-mediated ion transport to CF airways disease. We tested these hypotheses with planar and cylindrical culture models and found no evidence that the liquids lining airway surfaces were hypotonic or that salt concentrations differed between CF and normal cultures. In contrast, CF airway epithelia exhibited abnormally high rates of airway surface liquid absorption, which depleted the periciliary liquid layer and abolished mucus transport. The failure to clear thickened mucus from airway surfaces likely initiates CF airways infection. These data indicate that therapy for CF lung disease should not be directed at modulation of ionic composition, but rather at restoring volume (salt and water) on airway surfaces.
منابع مشابه
New concepts of the pathogenesis of cystic fibrosis lung disease.
Although there has been impressive progress in the elucidation of the genetic and molecular basis of cystic fibrosis (CF), the pathogenesis of CF lung disease remains obscure. The elucidation of the pathogenesis of CF lung disease requires both a full description of normal innate airway defence and how absent function of the cystic fibrosis transmembrane regulator protein (CFTR) adversely pertu...
متن کاملMucociliary Transport in Healthy and Diseased Environments
Mucociliary clearance in the lung is the primary defense mechanism that protects the airways from inhaled toxicants and infectious agents. The system consists of a viscoelastic mucus layer on top of a nearly-viscous periciliary layer surrounding the motile cilia. In healthy environments, the thickness of the periciliary layer is comparable to the cilia length. Perturbations to this system, whet...
متن کاملAnaerobic bacteria infection in cystic fibrosis airway disease.
Depletion of the periciliary liquid in "Cystic Fibrosis" airway disease results in reduced mucociliary transport, persistent mucus hypersecretion and consequently increased height of the luminal mucus layer, so hypoxic gradients in the mucus plugs are developed. Because of anaerobic lung zones, it is highly probable that anaerobic bacteria not detected by routine bacteriologic culture methods a...
متن کاملLoss of Anion Transport without Increased Sodium Absorption Characterizes Newborn Porcine Cystic Fibrosis Airway Epithelia
Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR⁻(/)⁻ pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and trach...
متن کاملLung disease in cystic fibrosis: is airway surface liquid composition abnormal?
RECURRENT INFECTION AND DETERIORATION of lung function are the major causes of morbidity and mortality in cystic fibrosis. Although the genetic defect in cystic fibrosis, mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator protein (CFTR), was discovered in 1989, the mechanism by which CFTR mutations cause lung disease remains uncertain. A number of provocative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 95 شماره
صفحات -
تاریخ انتشار 1998